
www.postersession.com
www.postersession.com

Breaking Down Memory Walls in LSM-based
Storage Systems

Background Memory Walls in LSM-trees
• The Log-Structured Merge-tree (LSM-tree) is a write-optimized structure by applying

out-of-place updates
• Efficient memory management is critical for storage systems to achieve high

performance

• Compared to update-in-place systems, LSM-trees have introduced additional
memory walls:
• Wall 1: static size limit on each LSM memory component
• Wall 2: no efficient sharing of write memory among multiple LSM-trees
• Wall 3: static memory allocation between write memory and buffer cache

• Must these break down these memory walls for optimal performance!

0-100

L0

0-15 20-35 38-45 50-60 65-80 85-99

0-30 35-70

0-100

Memory

Disk

flush

0-100

72-99

merge

L1

L2
0-10 12-20 25-36 40-50 55-70 75-80L3 81-90 92-99

writes

Adaptive Memory Management Architecture

......
LSM-tree 1 LSM-tree 2 LSM-tree N

Write Memory

on write

on cache miss

Buffer Cache

Global Memory

Memory
Tuner Mcache

Mtotal = Mwrite+Mcache

Mwrite

• Write Memory: store incoming writes for all LSM-trees
• All memory components are managed through a shared memory pool
• Pages are allocated on-demand when an LSM-tree has insufficient memory to store writes

• Buffer Cache: provides caching of immutable on-disk data
• All disk pages are managed using a predefined cache replacement policy

• Memory Tuner: tunes the memory allocation between Write Memory and Buffer Cache
• Minimize the overall I/O cost

Manage Write Memory Memory Tuner

Conclusion
• In this work, we break down memory walls of LSM-trees for optimal performance

• Introduced a new memory management architecture for adaptive memory
management

• Proposed a new memory component structure to better utilize write memory

• Check out our full paper “Breaking Down Memory Walls: Adaptive Memory
Management in LSM-based Storage Systems”
• Full design and implementation of the memory tuner
• Extensive evaluation on YCSB and TPC-C benchmarks
• Preprint available at: https://arxiv.org/abs/2004.10360

• Given a total memory budget 𝑀!"!#$, the tuning goal is to find optimal 𝑀%&'!(and
𝑀)#)*(to minimize the weighted I/O cost per operation

𝑤 # 𝐼/𝑂%&'!(+ 𝑟 # 𝐼/𝑂&(#+
• The weights 𝑤 and 𝑟 allow the tuning goal to be configured for different use cases

• On hard disks, 𝑤 can be set smaller since LSM-trees mainly use sequential I/Os for writes
• On SSDs, 𝑤 can be set larger since SSD writes are often more expensive than SSD reads

Memory
Tuner

Mwrite

Write Memory

Buffer Cache

workload statistics

Mcache

Preliminary Evaluation

0

4

8

12

16

20

0

4000

8000

12000

16000

20000

128 256 512 1024 2048 4096

W
rit

e
Am

pl
ifi

ca
tio

n

W
rit

e
Th

ro
ug

hp
ut

(R
ec

or
ds

/s
)

Write Memory Size (MB)

Write Throughput

Write Amplification

Workload
• YCSB benchmark with write-

only workloads
• Single LSM-tree with 100M

records

Large write memory significantly
improves write throughput and
reduces write amplification!

Design Goals
• Write memory directly impacts the merge cost of LSM-trees

• Important to utilize write memory efficiently for optimal performance

• Question 1: how to maximize the write memory utilization for a single LSM-tree?
• Existing LSM-tree implementations use B+-trees or skiplists to store incoming writes
• Low memory utilization because of (1) internal fragmentation and (2) freeing a large chunk

of write memory at once

• Question 2: how to allocate write memory to multiple LSM-trees efficiently?
• These LSM-trees are highly heterogenous with different sizes and write rates

Manage a Single LSM-tree
• To maximize the write memory utilization, we propose to use an in-memory LSM-tree

to store incoming writes
• LSM-trees achieve very high space utilization
• Trade CPU cycles for minimizing merge I/O cost

• Flushes are performed on a continuous-basis and memory utilization stays high

active0-100

0-50 55-99
0-20 25-53 55-80

M1
M2

L0

L1 0-15 20-35 38-45 50-60 65-80 85-99

81-99

10-30 32-55

0-23

Memory

Disk

flush

M0

25-50

65-80

group 1

group 0

......

memory merge

81-99

disk merge

writes

Manage Multiple LSM-trees
• Write memory is always allocated on-demand to an LSM-tree based on incoming

writes
• When write memory is full, an LSM-tree must be selected for flushing

• Existing LSM-tree implementations use a max-memory flush policy
• Flush the LSM-tree with the largest memory component
• Intuition: reclaim the most write memory for future writes

• However, the max-memory flush policy does not work well with the proposed memory
component structure
• Flushing any LSM-tree will reclaim the same amount of memory due to partial flushes

• We propose a min-LSN flush policy that always flushes the LSM-tree with the
minimum LSN
• The flush rate of an LSM-tree will be approximately proportional to its write rate

Chen Luo
University of California Irvine

cluo8@uci.edu
Advisor: Michael J. Carey

